Showing posts with label Pulickel Ajayan. Show all posts
Showing posts with label Pulickel Ajayan. Show all posts

Wednesday, February 18, 2009

Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries

Letter

Arava Leela Mohana Reddy, Manikoth M. Shaijumon, Sanketh R. Gowda and Pulickel M. Ajayan*
Department of Mechanical Engineering & Materials Science, and Department of Chemical & Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005
Nano Lett., Article ASAP
DOI: 10.1021/nl803081j
Publication Date (Web): February 2, 2009
Copyright © 2009 American Chemical Society

Department of Mechanical Engineering & Materials Science.

,

Department of Chemical & Biomolecular Engineering.

,
* To whom correspondence should be addressed, ajayan@rice.edu.

Abstract

Abstract Image

Coaxial manganese oxide/carbon nanotube (CNT) arrays deposited inside porous alumina templates were used as cathodes in a lithium battery. Excellent cyclic stability and capacity of MnO2/CNT coaxial nanotube electrodes resulted from the hybrid nature of the electrodes with improved electronic conductivity and dual mechanism of lithium storage. The reversible capacity of the battery was increased by an order compared to template grown MnO2 nanotubes, making them suitable electrodes for advanced Li ion batteries.

Tuesday, February 10, 2009

Hybrid Carbon Nanotube Metal Oxide Arrays to Improve Lithium Battery Technology

Need to store electricity more efficiently? Put it behind bars.

That's essentially the finding of a team of Rice University researchers who have created hybrid carbon nanotube metal oxide arrays as electrode material that may improve the performance of lithium-ion batteries.

With battery technology high on the list of priorities in a world demanding electric cars and gadgets that last longer between charges, such innovations are key to the future. Electrochemical capacitors and fuel cells would also benefit, the researchers said.

The team from Pulickel Ajayan's research group published a paper this week describing the proof-of-concept research in which nanotubes are grown to look – and act – like the coaxial conducting lines used in cables. The coax tubes consist of a manganese oxide shell and a highly conductive nanotube core.

"It's a nice bit of nanoscale engineering," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science.

"We've put in two materials – the nanotube, which is highly electrically conducting and can also absorb lithium, and the manganese oxide, which has very high capacity but poor electrical conductivity," said Arava Leela Mohana Reddy, a Rice postdoc researcher. "But when you combine them, you get something interesting."

That would be the ability to hold a lot of juice and transmit it efficiently. The researchers expect the number of charge/discharge cycles such batteries can handle will be greatly enhanced, even with a larger capacity.

"Although the combination of these materials has been studied as a composite electrode by several research groups, it's the coaxial cable design of these materials that offers improved performance as electrodes for lithium batteries," said Ajayan.

"At this point, we're trying to engineer and modify the structures to get the best performance," said Manikoth Shaijumon, also a Rice postdoc. The microscopic nanotubes, only a few nanometers across, can be bundled into any number of configurations. Future batteries may be thin and flexible. "And the whole idea can be transferred to a large scale as well. It is very manufacturable," Shaijumon said.

The hybrid nanocables grown in a Rice-developed process could also eliminate the need for binders, materials used in current batteries that hold the elements together but hinder their conductivity.

Posted February 9th, 2009

Source