Showing posts with label Rozhkova. Show all posts
Showing posts with label Rozhkova. Show all posts

Monday, December 14, 2009

Nano-Pancakes to Fight Brain Cancer

(flickr photo by kjten22)


Posted at 10:57 am CT on December 14, 2009

Brain tumors are some of the hardest cancers to treat - unresponsive to treatment, difficult to access surgically, and quick to grow. Surgery, radiation, and chemotherapy drugs may all be enlisted to fight off a malignant glioma, but still the prognosis is often measured in months, according toMaciej Lesniak, associate professor of surgery and director of the Brain Tumor Center at the University of Chicago Medical Center. That creates a demand for inventive thinking about creative strategies to target tumor cells and extend the life of patients with brain cancer, Lesniak said.

“There have been advances in new therapies, but they haven’t been significant enough to make a tremendous difference in terms of extending the life of patients,” Lesniak said. “That puts you in a situation where due to the desperation, you start to look at novel, exciting and potentially interesting ways of developing new therapies for an incurable disease.”

Creative strategies such as really, really tiny magnetic golden pancakes.

Scientists from the Center for Nanoscale Materials and the Material Sciences Division at Argonne National Laboratory have been studying the “magnetic vortex state” of microdiscs - small iron-nickel discs so small that even “microscopic” over-characterizes their size - for several years. Applying even a weak magnetic field to these discs causes them to rotate, a property that Argonne’s Dong-Hyun Kim, Elena Rozhkova and Valentyn Novosad thought would be a possible weapon against cancer cells. If one could attach these discs to tumor cells, then expose them to a magnetic field to set them rotating, would their vibrations tear the cells apart?

The microdiscs (courtesy of Argonne)

The microdiscs (courtesy of Argonne)

That rather odd hypothesis was demonstrated to work in a recent paper published in the journal Nature Materials (News & Views article here), at least in the controlled environment of the test tube. Researchers coated the microdiscs in gold (to prevent rejection by the cells) and attached an antibody to target the discs to cancer cells but not normal cells. After giving the discs time to bind to cells, a very weak, alternating magnetic field - about the same strength as a magnetic screwdriver, Novosad said - was applied to the cells at a low frequency for 10 minutes.

The cells were not happy about this. When allowed to grow in culture after the magnetic field treatment, the cells were “rounded off, with membrane shrinkage and loss of membrane integrity” and “an apparent fractioning and redistribution of nucleus material.” In other words, they died. That was even more carnage than the researchers imagined, so much so that they had to reconfigure their hypothesis about how exactly the discs’ rotation would cause cell death.

“We didn’t expect much, when we tried the in vitro experiments,” Novosad said. “But the very first results were so surprising, the next experiments were just to confirm that we did indeed have such a strong anti-cancer effect.”

After a weak magnetic field is applied, the microdiscs rotate (courtesy of Argonne)

After a weak magnetic field is applied, the microdiscs rotate (courtesy of Argonne)

Rather than ripping holes in the membrane, further experiments found that the discs wreaked havoc through a more discrete mechanism. In the membrane of cells are a group of proteins called stretch receptors, portals that open when the skin of the cell is stretched. Once the doors are open, calcium flows into the cell - a good thing in small quantities, as calcium is responsible for neuronal communication and other functions. But when the stretch receptors are held open by rotating microdiscs, calcium floods into the cell and triggers apoptosis, also known by the intimidating name of “programmed cell death.” A refusal to undergo apoptosis is one hallmark of a tumor cell, so the oscillating microdiscs may disrupt tumors by convincing previously stubborn cells to die.

“Perhaps it doesn’t matter how it works. The important thing is that it works,” Lesniak said. “The great thing about this approach is it changes the mindset from trying to use pharmaceutical agents to do something to a cell to actually damaging the cancer cell in a mechanical fashion.”

The treatment, like the nanoscale photocatalysts I wrote about previously, is still many years away from clinical trials - Rozhkova, Novosad and Lesniak said that animal trials will begin shortly, with clinical trials to follow if results continue to be promising. Besides proving that the technique will work in an actual brain, the research must also make sure that the microdiscs do not have side effects that outweigh their benefit, either by killing off normal cells as well as tumor cells or producing an immune rejection by other parts of the body. How to get the microdiscs to the tumor is another problem to solve, Lesniak said; it’s possible that they could be merely injected into the blood, but it’s not clear whether they would reach the brain that way, or whether they would have to be directly applied to the tumor during surgery.

Regardless, it’s a promising technique, one that takes full advantage of a unique partnership between a leading research hospital and a leading materials research laboratory separated by only 25 miles of the Stevenson Expressway. And yet another potential use for nanomaterials, which Rozhkova likes to think of as the Swiss Army Knives of material science with applications for energy, manufacturing and medicine.

“For these magnetic particles, you cannot find any precedent in therapeutics or pharmaceutical agents because they are unique,” Rozhkova said. “These are excellent materials with lots of functions.”

Posted by - Rob Mitchum

Friday, December 4, 2009

Magnetic microdiscs target and initiate cell death in tumors

By ANN WANG
Issue date: 12/3/09

Scientists working at Argonne National Laboratory in Chicago and The University of Chicago have developed an effective method to target and kill cancer cells using tiny magnetic discs.

The microdiscs, only one micron in diameter, work by disrupting the outer membranes and initiating chemical pathways that lead to apoptosis, or cell death. In laboratory tests, the microdiscs destroyed up to 90 percent of cancer cells after being activated for only 10 minutes.

One major drawback of chemotherapy drugs, widely used to treat cancers, is that they cannot be targeted to tumor cells. These drugs affect the entire body and often cause painful side effects such as hair loss, nausea, fatigue and a weakened immune system.

For several decades, scientists have been trying to develop nanoparticles that can deliver drugs specifically to cancer cells. Although several such methods are now being tested in clinical trials, practical hurdles still remain.

Up until now, effective treatments required high concentrations of magnetic particles and high levels of power to activate them. Both could cause harmful side effects in patients.

The new research offers a potential solution to many of these problems. The team studied an aggressive brain cancer called glioblastoma multiforme. The surfaces of these cancer cells, called glioma cells, contain a much higher concentration of a protein called IL13 than normal cells do.

The microdiscs, each 60 nm wide and 1000 nm in diameter, were made of an iron and nickel alloy, then coated with a thin gold veneer. Gold is both nontoxic to living tissues and easy to modify with organic molecules. The gold-covered microdiscs were then coated with antibodies that would recognize and bind to the overexpressed protein on glioma cells.

Once introduced into the body, or in this case a cell culture, the antibodies guide the microdiscs to attach to the surface of the cancerous glioma cells, but not healthy cells. About 10 microdiscs attached to each cancer cell.

Because they are discs instead of particles, and much wider than they are thick, the microdiscs have a magnetic property known as a spin-vortex ground state, and they oscillate when an alternating current is applied.

The cell membrane consists of a fluid double layer of lipid molecules, more like the film that forms over a bowl of cold soup. This fluid membrane is easily disrupted by the twisting and turning motion of the microdiscs attached to its surface.

"The spin-vortex-mediated stimulus creates two dramatic effects: compromised integrity of the cellular membrane . . . and initiation of programmed cell death," said Elena Rozhkova, a research scientist at Argonne National Laboratory who worked on the study.

After they activated the microdiscs, the researchers noticed that most of the cancer cells looked like they were undergoing apoptosis, the controlled pathway towards death that normal cells are programmed to follow once they reach the end of their useful lives.

Cancer cells have developed mutations that allow them to escape cell cycle control and apoptosis. Instead of dying when they should, they divide and grow continuously, forming tumors.

However, the microdisc-treated glioma cells had fragmented DNA and nuclei, rounded shapes and irregular surface bulges (scientific term: blebs), all classic signs of cells undergoing apoptosis.

But the force the microdiscs exerted could not have caused such striking changes in the cells alone. In fact, the torque exerted by the microdiscs was less than one tenth of the torque needed even to break the outer membrane.

It was clear that the surface disruptions that the discs created were activating a signaling pathway inside the cell that led to apoptosis.

The researchers found that microdisc-treated cells had much higher concentrations of calcium than usual. Calcium plays a major role in many cell pathways and is known to be a key signaling molecule in apoptotic pathways.

Previous studies had also shown that even minor, temporary cell membrane disturbances can raise calcium levels within cells. It seems likely that the mechanical stimulus provided by the microdiscs is then amplified as a chemical signal inside the cell, leading the cell to begin apoptosis.

One key advancement in the team's research was that because of the material used to make the discs, a relatively low frequency and short treatment time was enough to kill most cancer cells. The relative mildness of the treatment may help decrease side effects in vivo.

"Using the unique 'soft' magnetic material allows application of a low-frequency field of a few tens of hertz applied for only ten minutes, [which] was sufficient to achieve approximately 90% cancer-cell destruction in vitro," Rozhkova said. "This is 10-100,000 times weaker magnetic field that it is used for superparamagnetic particles."

Although these new findings offer a promising new way that nanotechnology can be used to treat cancer, more work needs to be done before clinical trials can begin.


Ref:
Ferromagnetic microdisks as carriers for biomedical applications
J. Appl. Phys. 105, 07B306 (2009); doi:10.1063/1.3061685

Published 5 March 2009
You are not logged in to this journal. Log in
E. A. Rozhkova,1 V. Novosad,2 D.-H. Kim,2 J. Pearson,2 R. Divan,1 T. Rajh,1 and S. D. Bader2
1Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Materials Sciences Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

We report the fabrication process, magnetic behavior, as well as the surface modification of ferromagnetic microdisks suspended in aqueous solution. They posses unique properties such as high magnetization of saturation, zero remanence due to spin vortex formation, intrinsic spin resonance at low frequencies, and the capability of delivering various biomolecules at once. Furthermore, because of their anisotropic shape, our magnetic particles rotate under alternating magnetic fields of small amplitude. This can be used to promote the idea of advanced therapies, which include combined drug delivery and magnetomechanical cell destruction when targeting tumor cells. The approach enables us to fabricate suitable magnetic carriers with excellent size tolerances, and then release them from the wafer into solution, ready for surface modification and therapeutic use. The particles have a magnetic core and are covered with few nanometers of gold on each side to provide stability at ambient conditions as well as biocompatibility and selective adhesion functions. A successful attempt to bind thiolates, including SH-modified antibody, to the disk's surface was demonstrated. ©2009 American Institute of Physics
History:Presented 12 November 2008; received 13 October 2008; accepted 23 October 2008; published 5 March 2009
Permalink:http://link.aip.org/link/?JAPIAU/105/07B306/1