Showing posts with label blood. Show all posts
Showing posts with label blood. Show all posts

Monday, May 19, 2008

Nanohealing Material Heads to Market

Monday, May 12, 2008

A startup is planning human trials for a nanostructured material that quickly stops bleeding.

By Kevin Bullis

Blood stopper: The clear fluid in this dish transforms into a gel in the presence of blood; such a gel can stops bleeding almost instantly.
Credit: Asia Kepka

A startup based in Cambridge, MA, says that it plans to soon begin clinical trials of a nanostructured material that stops bleeding almost instantly. A startup called Arch Therapeutics has licensed the technology from MIT and is developing manufacturing processes for making it in large amounts.

The new material can be poured over a site and will stop the bleeding almost at once.

The first application, pending Food and Drug Administration approval, will be for use during surgery to quickly stop bleeding and even prevent it in the first place. Floyd Loop, currently an advisor to Arch Therapeutics, and formerly a cardiovascular surgeon and the head of Cleveland Clinic, says that it could be useful in a wide variety of surgeries, including brain, heart, and prostate. For example, he says that when large tumors are removed, "there's a lot of diffuse bleeding around the site, and you have to spend a lot of time with sponges and cautery stopping it."

Loops says that in addition to saving time, which can improve the outcome of a surgery, the material could decrease the need for transfusions and reoperations to control bleeding. What's more, it could reduce the risk of infection. It could be used, for instance, to prevent leakage after bowel-repair surgery. "I've never seen anything like it," Loop says.

Eventually, the material could be used by first responders to stop bleeding at accident sites and on the battlefield. It has a long shelf life, which makes it attractive for use in first-aid kits. It's also easily broken down by the body, so it doesn't have to be removed, unlike other agents for stopping blood flow. However, Loop cautions that further tests are needed to confirm that the material will work in nonsurgical applications.

The material, a synthetic peptide, was discovered at MIT in the early 1990s. But it wasn't until a few years ago that its potential for stopping bleeding was discovered. Rutledge Ellis-Behnke, a researcher at MIT's Department of Brain and Cognitive Sciences, was exploring its potential use to promote the healing of brain injuries. When he applied a liquid containing the synthetic peptides to a wound site in animal experiments, bleeding in the area stopped within a few seconds. Arch Therapeutics was founded in mid-2006 to develop the material for commercial use. The company made its first public appearance late last month when it announced a finalized licensing agreement for the new technology.

Source

Friday, May 2, 2008

A diagnostic "nanochip" that would detect markers of disease from all ovr the body

Technology Review - Published By MIT
[A SNIP]

TR: For the past several years, researchers at your institute have talked about a diagnostic "nanochip" that would detect markers of disease from all over the body. Can you update me on that project?

LH: What we're interested in doing is developing strategies that will let us identify proteins in the blood that will permit us to interrogate the state of individual organs: the liver, the heart, the muscle--whatever you'd like to look at.

The basic idea is that the organ-specific proteins from, say, the liver will reflect the operation of the networks in the liver. So they'll be at one set of concentrations for normal liver, and a different set of concentrations for a liver that has cancer or hepatitis or cirrhosis and other diseases. These blood fingerprints, then, are not assays for a disease; they're assays for all disease. We've looked at two organ systems: the brain and the liver. We've certainly verified in general ways these principles.

We'd like to be able to identify fiftyish organ-specific blood proteins from each of the organs, and then be able to measure them so we could have an organ-wide assay. We'd like to give you a very broad-spectrum screen of all the different major organs in disease. The challenge is to be able to do the measurements in the blood, because that's the only organ that's readily accessible; that's the only organ that bathes all other organs; and it's an organ whose fluid properties make it easily manipulable for measurement and so forth.

TR: What progress have you made?

LH: This is really a challenging project. We've been collaborating with James Heath at Caltech for about four years. We have a little nanochip, if you will, that can make 20 different measurements of blood proteins. It can make the measurements in about five minutes' time and is as sensitive as any assay out there right now. And it will probably operate across six to eight orders of magnitude [in terms of] concentration difference--that's really important if you want to make blood measurements, because a big organ like the liver puts a lot of proteins in the blood, and a small organ like the beta cells of the pancreas puts out very few. You have to be able to span many orders of magnitude if you're going to make appropriate measurements.

TR: When can we expect this nanochip?

LH: There are two challenges with the chip that we're currently facing. One, getting good antibody reagents is really difficult and really expensive. So we're going to explore alternative chemistries for creating protein-capture agents. The second big challenge for the nanochips is learning how to manufacture them on a scale that will make these measurements a few pennies per protein. The cost we have now is on the order of $50 per chip. And of course manufacturing is also important, to have good quality control, reproducibility in chip features. We're optimistic that both of those problems can be scaled and that we can scale chips up to make thousands of measurements.

Source