Friday, December 26, 2008

Better Than Phelps: Nanowires Zap Cancer

This image depicts several cells coated with fluorescent dyes making them appear red. Three nanowires – the neon green lines – have successfully attached themselves to the cells. When a low frequency electromagnetic field is applied, the nanowires heat up and destroy the attached cells.
Category: College of Engineering Date: 12/18/2008

Better Than Phelps: Hot, Golden, Swimming Nanowires Zap Cancer

Dec. 18, 2008

Image is available at

Written by Ken Kingery

MOSCOW, Idaho – The next big thing in cancer treatment may be hotter, covered in more gold, and even be a better swimmer than recent Olympic champion Michael Phelps.

Scientists at the University of Idaho are engineering multifunctional and dynamic nanowires coated in gold that swim through the bloodstream and attach to specific cancerous cells. Once there, an electromagnetic field heats the nanowires, which destroys the targeted cells. The research is supported by a new $425,000 grant, part of a multimillion dollar project funded by the Korean government as part of the International Global Collaboration Pioneer Program.

“Cancer is a dangerous enemy because radiation and chemical treatments cause a lot of side effects,” said Daniel Choi, associate professor of materials science and engineering at the University of Idaho and leader of the project. “We can’t avoid side effects 100 percent, but these nanowires will minimize the damage to healthy cells.”

The technology involves many steps requiring lots of continuing research, but each of the basic concepts already have been proven in laboratory tests.

Choi and his team have already created nanowires that can “swim” to their targets and heat up when exposed to low frequency electromagnetic fields, which are not harmful to human body. The next step is to make them biocompatible, meaning safe to introduce to the human body, and able to seek out specific cancer cells.

Choi believes the gold plating will take care of the biocompatibility. If not, he has several polymers in mind that he also believes would work.

As for seeking out specific cancer cells, Choi also is a member of and working with a University of Idaho group called BANTech – an interdisciplinary group that integrates nanomaterials research with cell biology and bioscience research. The group has identified several promising candidates for antibodies with which to coat the nanowires that would seek out and attach to specific cancer cells.

Once the technology has proven itself in the laboratory, it will be tested in live animals, and eventually human beings. Several Korean institutions, which are helping in every phase of research, will take the lead in that project. The institutions are Seoul National University, Korea University and the Korea Institute of Science and Technology.

“Collaborating with Korean institutions has been a wonderful experience full of mutual benefits and great achievements,” said Choi. “Multi-institutional, multi-national projects can provide students and researchers with opportunities to engage in cutting-edge investigations within an international research environment, which is very important to advancing science.”

# # #

About the University of Idaho

Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 150 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities. For information, visit

Media Contact: Ken Kingery, University Communications, (208) 885-9156,


Hyperthermia with Magnetic Nanowires for Inactivating Living Cells

D. S. Choi1 ∗, J. Park2, S. Kim2, D. H. Gracias2, M. K. Cho3, Y. K. Kim3†, A. Fung4,
S. E. Lee5, Y. Chen4, S. Khanal1, S. Baral1, and J.-H. Kim1
1Department of Materials Science and Engineering, University of Idaho, Moscow, ID 83844
2Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
3Department of Materials Science and Engineering, Korea University, Seoul 136-713, Korea
4Department of Biomedical Engineering, University of California, Los Angeles, CA 90095, USA
5Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA

We describe a method to induce hyperthermia in cells, in-vitro, by remotely heating Ni nanowires (NWs) with radio frequency (RF) electromagnetic fields. Ni NWs were internalized by human embryonic kidney cells (HEK-293). Only cells proximal to NWs or with internalized NWs changed shape on exposure to RF fields indicative of cell death. The cell death occurs as a result of hyperthermia, since the RF field remotely heats the NWs as a result of magnetic hysteresis. This is the first demonstration of hyperthermia induced by NWs; since the NWs have anisotropic and strong magnetic moments, our experiments suggest the possibility of performing hyperthermia at lower field strengths in order to minimize damage to untargeted cells in applications such as the treatment of cancer.


Daniel S. Choi, Ph.D.