Showing posts with label MIT. Show all posts
Showing posts with label MIT. Show all posts

Thursday, January 19, 2012

Novel strategy improves cancer cell uptake of nanoparticles

Posted: Jan 19th, 2012
Novel strategy improves cancer cell uptake of nanoparticles
(Nanowerk News) One of the promises of using nanoparticles to deliver potent anticancer agents to tumors is that it is easy to coat nanoparticles with tumor-targeting molecules that should increase the amount of drug that reaches a tumor while decreasing the amount of drug that hits healthy tissue. Taking this idea one step further, researchers at Harvard Medical School and the Massachusetts Institute of Technology have developed a strategy for identifying what could be called tumor uptake molecules for use on nanoparticles. This new class of tumor-targeting agents boosts the amount of drug-loaded nanoparticles that get into cancer cells.
Omid Farokhzad and Robert Langer, both members of the MIT-Harvard Center for Cancer Nanotechnology Excellence (CCNE), led this study. The researchers published their findings in the journal ACS Nano ("Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection").
The MIT-Harvard CCNE team focused their discovery efforts on molecules known as aptamers, which are small pieces of RNA or DNA that form three-dimensional shapes capable of binding tightly and specifically to designated targets. In most instances, aptamers are constructed to target a known biomolecule—a disease-associated protein, for example. In this case, the investigators took a different approach and instead targeted two biological properties—the ability to distinguish a prostate cancer cell from a normal prostate cell and the ability to get into the diseased cells. They performed this feat by starting with a huge pool of random RNA sequences and through an iterative process gradually enriched this pool for RNAs that targeted and entered prostate cancer cells. After 12 cycles of this enrichment process, the investigators identified a small number of aptamers that each displayed superior tumor targeting and uptake properties.
The researchers chose one of these aptamers and linked it to a polymer nanoparticle loaded with docetaxel, a potent anticancer agent. Experiments have so far shown that this construct has no effect on normal cells but is highly toxic to prostate cancer cells. The investigators are planning further studies in animal models of prostate cancer. They note that this approach is easily modified to finding targeting and uptake aptamers for any type of cancer cell.
Source: National Cancer Institute

http://www.nanowerk.com/news/newsid=24007.php

Friday, March 25, 2011

Creating power from water

March 25, 2011 by Katie Gatto weblog Creating power from water

Enlarge

Image credit: J. Am. Chem. Soc., 2009, 131 (11), pp 3838-3839. DOI: 10.1021/ja900023k



VIDEOS:
http://www.youtube.com/watch?v=WD9yr-Bf-Kw&feature=player_embedded
http://cdn-static.viddler.com/flash/simple_publisher.swf?key=130140d9

(PhysOrg.com) -- Creating power from water. I bet when I say that you picture a damn or a large turbine being pushed by hundreds of thousands of gallons of water, all rushing at tremendous speeds. It is a cool, and accurate, image of how most power comes from water. That is not to say that it is the only way that power can come from water.

Researchers at the The Tata Group have been working with Daniel Nocera, an MIT scientist and founder of SunCatalytix, have found a new way to coax power out of water. If you're wondering how that was accomplished here are the basics.

The research team placed an artificial sheet of artificial cobalt- and phosphate-coated silicon into a jar of water. This produced an effect similar to . The splitting of from water was used to generate power from the . Interestingly enough, this technique was able to produce more power than the current generation of .

This technology, which can be used with gray water, could be used to power a mini power plant, that would be about the size of a refrigerator, according to the researchers. Of course, those plans could change, since this research is really only it its early stages. By next year the team expects to be able to power a small home with only roughly a bottle and a half of . While specifics of the deal have not been made public at this time, The Tata Group's mission is to bring basic needs and other essential resources to low-income peoples, and the best guess is that this technology will involve that market.

More information: http://www.suncatalytix.com/tech.html

Source

Monday, February 21, 2011

HyperSolar, Inc.

Investor Information

HyperSolar, Inc. is a public company trading on the Over-the-Counter Bulletin Board market (the OTCBB). The stock symbol for HyperSolar is "HYSR” or “HYSR.OB”.

HyperSolar, Inc. intends to provide all solar manufacturers with a technology to lower the cost per watt of solar panels. By doing so, HyperSolar will help solar become a primary source of clean, renewable energy to power the future needs of the world.

HyperSolar is developing a breakthrough technology that magnifies the power of the sun to significantly increase the power output of solar cells. Using innovative photonics and low-cost manufacturing processes, HyperSolar is developing the world's first thin and flat solar concentrator for standard solar cells. Applied on top of solar cells, the low-cost HyperSolar concentrator can increase solar cell power output by as much as 400%. By adding the HyperSolar concentrator, manufacturers can use significantly fewer solar cells in the production of solar panels and dramatically reduce the cost per watt of solar electricity.

HyperSolar, Inc. intends to provide all solar manufacturers with a technology to lower the cost per watt of solar panels. By doing so, HyperSolar will help solar become a primary source of clean, renewable energy to power the future needs of the world.HyperSolar is developing a breakthrough technology that magnifies the power of the sun to significantly increase the power output of solar cells. Using innovative photonics and low-cost manufacturing processes, HyperSolar is developing the world's first thin and flat solar concentrator for standard solar cells. Applied on top of solar cells, the low-cost HyperSolar concentrator can increase solar cell power output by as much as 400%. By adding the HyperSolar concentrator, manufacturers can use significantly fewer solar cells in the production of solar panels and dramatically reduce the cost per watt of solar electricity.

The Sun is our most abundant source of energy. A single hour of sunlight shining on the Earth can power the entire world for a year. There are many reasons to be excited about the potential of the solar industry. Consider the following facts and forecasts:
  • The solar market has been growing at 50% every year for the past last 10 years, reaching at market size of $33 billion in 2008.
  • Solar technology supplied a mere 0.15% of the global electricity in 2008.
  • Total solar panel installation at the end of 2008 is 15 billion watts (15 gigawatts). This amount is projected to increase to more than 1.8 trillion watts (1.8 terawatts) by 2030.
  • The dramatic growth of the solar industry in the past decade is only representative of 3 countries: Germany, Japan and USA. USA is just beginning to increase its commitment to solar energy, and the rest of the world will soon follow.
  • Solar power offers one of the few mass-scale solutions to meet the world’s enormous demand for clean and renewable power without pollution or greenhouse gas emissions.

Wednesday, November 17, 2010

Using the body’s own defenses to combat cancer

By engineering T cells to attack tumors, researchers hope to add a new weapon to their cancer-fighting arsenal.

Anne Trafton, MIT News Office

November 17, 2010

In the past 40 years, scientists have learned a great deal about how cells become cancerous. Some of that knowledge has translated to new treatments, but most of the time doctors are forced to rely on standard chemotherapy and radiation, which can do nearly as much damage to the patients as they do the tumors. This series looks at targeted treatments that are on the horizon, and what needs to be done to make them a reality.

When a virus invades the human body, the immune system springs into action. Specialized cells called killer T cells roam the body, identifying and killing infected cells, with help from countless other cells and molecules.

Cancer biologists have long been intrigued by the prospect of harnessing those T cells to attack tumors, either to supplement or replace traditional chemotherapy. Using T cells to wipe out tumor cells could avoid the side effects often seen with chemotherapy.

“It has great potential,” says Jianzhu Chen, an MIT biology professor working on T-cell therapies for cancer. However, success has been limited, he says, because the exquisite coordination needed to launch a T-cell attack has proven difficult to replicate.

MIT engineers have developed a way to attach drug-carrying pouches (yellow) to the surfaces of cells.
Image: Darrell Irvine and Matthias Stephan

Scientists at the National Cancer Institute have had some striking successes treating melanoma with T-cell therapy, but so far it has been much less effective against other cancers. According to Chen and other researchers investigating T-cell therapy, several challenges remain: getting viable T cells from the patient, engineering them to target tumors, and making sure the T cells stay alive once re-injected into the patient.

Billions of T cells flow through the average person’s bloodstream at any given time, each specialized to recognize different molecules. When a T cell encounters a cell that has a foreign molecule on its surface — indicating it has been infected — it kills the cell and starts multiplying rapidly, creating an army of T cell clones all specialized to hunt down and destroy infected cells.

Like infected cells, tumor cells have surface proteins that are not found on healthy cells, but those proteins do not seem to provoke T cells to attack. To generate T cells suitable for cancer therapy, researchers need to remove T cells from the patient and program them to attack a specific tumor molecule.

T-cell generation

Those T cells can be obtained either from the patient’s blood or from the tumor itself. To have any effect, vast numbers of tumor-specific T cells are needed — up to a trillion. After removing T cells from the body, researchers treat them with growth factors called cytokines, which stimulate the cells to multiply.

Generating enough T cells this way can take weeks, and T cells from cancer patients with suppressed immune systems don’t proliferate very well, making it impossible to generate enough cells.

Those T cells also have to be engineered to target specific molecules, such as HER2, a protein found on breast cancer cells. However, just recognizing those proteins is not enough to stimulate T cells. The proteins must be displayed with cell-surface molecules known as MHC. Tumors have very low levels of MHC, making it easier for them to evade T-cell attack.

To get around that problem, some researchers have engineered T cells that express antibodies; these antibodies recognize foreign molecules and are normally found on a different type of immune cell called B cells. Antibodies do not require MHC stimulation, so T cells expressing them can become activated more easily. Several clinical trials using this approach are now underway.

Staying alive

Another obstacle is keeping the T cells alive once they are returned to the patient. Most T cells have a short lifespan, so after weeks of manipulation in the lab, they may die soon after they enter the patient. Furthermore, the tumor itself creates an environment very hostile to T cells. This is why most clinical trials for T cell therapy have “failed miserably,” says Chen, who is a member of MIT’s David H. Koch Institute for Integrative Cancer Research. “After the T cells are transferred back, most of them simply die.”

His lab is now trying to figure out how tumor cells suppress T-cell function, in hopes of finding ways to reactivate the T cells.

Researchers at the National Cancer Institute, who have had some success treating melanoma with T cells, “primed” their patients by destroying most of their existing T cells with chemotherapy, making way for the new cells to proliferate. Giving patients large doses of growth factors called cytokines also helps, but those can have severe side effects, including heart and lung failure, when given in large doses.

Darrell Irvine, MIT associate professor of biological engineering and Koch Institute member, and postdoctoral fellow Matthias Stephan recently developed a new approach that could avoid those side effects. They engineered T cells with tiny pouches that can carry cytokines, which are gradually released from the pouches, enhancing the longevity of the T cells that carry them.

In a study published in the journal Nature Medicine in August, Irvine and Stephan used their modified T cells to treat mice with lung and bone marrow tumors. Within 16 days, all of the tumors in the mice treated with T cells carrying the drugs disappeared. Those mice survived until the end of the 100-day experiment, while mice that received no treatment died within 25 days, and mice that received either T cells alone or T cells with injections of cytokines died within 75 days.

They are now working on ways to more easily synthesize the pouches at a large scale, so they can be tested in humans, using materials that would be more likely to get FDA approval.

A time-consuming process

Despite the obstacles remaining, many cancer researchers still believe T-cell therapy is a promising approach. “The major advantage of T cells is that unlike chemotherapy and radiation, there’s very little toxicity associated with them,” says Cliona Rooney, a professor in the Center for Cell and Gene Therapy at Baylor College of Medicine.

Rooney and colleagues have developed T cells to treat lymphoma associated with Epstein-Barr virus, including Hodgkin’s and non-Hodgkin’s lymphoma. These studies have demonstrated that even small numbers of T cells can be effective if they proliferate inside the patient’s body, and as few as 20 million cells have produced complete regression of relapsed lymphomas in around 60 percent of patients.

One potential drawback to widespread use of T-cell therapy is that while engineering the cells has become easier, it’s still a time-consuming process, says Rooney. “It’s not off-the-shelf,” she says. “We have to make T cells for every patient. It’s not so much a drug as a procedure, which must be personalized for every patient.”

Though that could be expensive, she expects it will be comparable to traditional cancer treatment options, because hospitalization and side effects will be reduced.

In some cases, T-cell therapy might be most beneficial when used in combination with other treatments. Stephan believes T-cell therapy could produce better results if patients received it right after having surgery to remove the bulk of the tumor, to clear out any residual cancer cells. "Ongoing T cell therapy clinical trials enroll primarily late-stage cancer patients with well-established relapsing tumors as a final experimental treatment option,” he says. “T cell therapy could reveal its full potential when combined with surgery in newly diagnosed patients.”

Source

Thursday, March 11, 2010

Scientists Discover New Way to Generate Electricity

A carbon nanotube (shown in illustration) can produce a very rapid wave of power when it is coated by a layer of fuel and ignited, so that heat travels along the tube. Credit: Christine Daniloff

Researchers have found a way to produce large amounts of electricity from tiny cylinders made from carbon atoms.

The achievement could replace decades-old methods of generating electricity, such as combustion engines and turbines, the researchers say.

In the future, coated carbon nanotubes crafted from individual atoms could power everything from cell phones to hybrid-electric vehicles. The team envisions such nanotube-based power being available to consumers in the next five years.

Carbon nanotubes are thin sheets of carbon rolled up into teensy tubes each with a diameter about 30,000 times smaller than a strand of hair.

When carbon — one of the most abundant elements on Earth — is rolled up into tubes, it exhibits some extraordinary properties such as high heat conduction, which the team exploited in the new study.

A carbon firecracker

The researchers coated the nanotubes with a fuel, such as gasoline or ethanol, and applied heat to one end. The result: The fuel reacts and produces more heat, which ignites more fuel to create even more heat.

The process creates “a wave that travels like dominoes falling in a line [down the length of the nanotube],” said study team member Michael Strano, a chemical engineer at the Massachusetts Institute of Technology (MIT).

The resulting heat wave, it turns out, also creates a wave of electrons moving in one direction – aka electricity.

“The thermal wave squeezes electrons out of the nanotubes like a tube of toothpaste,” Strano explained.

The devices built in the MIT lab produced 10 times more power than a lithium-ion battery of equivalent mass.

What's intriguing about these waves is that we haven’t really done any engineering to make them efficient yet and already they’re ten times [more powerful than] a lithium-ion battery,” Strano told TechNewsDaily. “We may be able to make very very small power sources out of them."

Cell phone battery replacement

The fuel-coated nanotubes could replace batteries for cell phones and other devices. Strano imagines a device with a button that you would push to create heat from friction, triggering the electricity-generating reaction inside the microscopic tubes.

These power devices could be made 10 times smaller than today’s cell-phone batteries but still hold the same amount of power. Furthermore, unlike today’s batteries, the carbon nanotube variety would not contain any toxic metals.

With some tweaking, the carbon nanotubes could even power a car, Strano said. But instead of coating the carbon cylinders with fuel, a liquid fuel could be stored in the car's gas tank and get injected onto the carbon nanotube battery when needed.

Strano said he was confident his team's discovery could be translated into commercial batteries within a few years.

“We have a lot of engineering challenges that we have to overcome in order to make this a commercial device," Strano said, "but nothing is as difficult as the initial discovery."

Strano and his colleagues detail their discovery in the March 7 issue of the journal Nature Materials.

Source

Friday, November 20, 2009

Turning heat to electricity

David L. Chandler, MIT News Office

MIT research points to a much more efficient way of harvesting electrical power from what would otherwise be wasted heat.

In everything from computer processor chips to car engines to electric powerplants, the need to get rid of excess heat creates a major source of inefficiency. But new research points the way to a technology that might make it possible to harvest much of that wasted heat and turn it into usable electricity.

That kind of waste-energy harvesting might, for example, lead to cellphones with double the talk time, laptop computers that can operate twice as long before needing to be plugged in, or power plants that put out more electricity for a given amount of fuel, says Peter Hagelstein, co-author of a paper on the new concept appearing this month in the Journal of Applied Physics.

Hagelstein, an associate professor of electrical engineering at MIT, says existing solid-state devices to convert heat into electricity are not very efficient. The new research, carried out with graduate student Dennis Wu as part of his doctoral thesis, aimed to find how close realistic technology could come to achieving the theoretical limits for the efficiency of such conversion.

Theory says that such energy conversion can never exceed a specific value called the Carnot Limit, based on a 19th-century formula for determining the maximum efficiency that any device can achieve in converting heat into work. But current commercial thermoelectric devices only achieve about one-tenth of that limit, Hagelstein says. In experiments involving a different new technology, thermal diodes, Hagelstein worked with Yan Kucherov, now a consultant for the Naval Research Laboratory, and coworkers to demonstrate efficiency as high as 40 percent of the Carnot Limit. Moreover, the calculations show that this new kind of system could ultimately reach as much as 90 percent of that ceiling.

Hagelstein, Wu and others started from scratch rather than trying to improve the performance of existing devices. They carried out their analysis using a very simple system in which power was generated by a single quantum-dot device — a type of semiconductor in which the electrons and holes, which carry the electrical charges in the device, are very tightly confined in all three dimensions. By controlling all aspects of the device, they hoped to better understand how to design the ideal thermal-to-electric converter.

Hagelstein says that with present systems it’s possible to efficiently convert heat into electricity, but with very little power. It’s also possible to get plenty of electrical power — what is known as high-throughput power — from a less efficient, and therefore larger and more expensive system. “It’s a tradeoff. You either get high efficiency or high throughput,” says Hagelstein. But the team found that using their new system, it would be possible to get both at once, he says.

A key to the improved throughput was reducing the separation between the hot surface and the conversion device. A recent paper by MIT professor Gang Chen reported on an analysis showing that heat transfer could take place between very closely spaced surfaces at a rate that is orders of magnitude higher than predicted by theory. The new report takes that finding a step further, showing how the heat can not only be transferred, but converted into electricity so that it can be harnessed.

A company called MTPV Corp. (for Micron-gap Thermal Photo-Voltaics), founded by Robert DiMatteo SM ’96, MBA ‘06, is already working on the development of “a new technology closely related to the work described in this paper,” Hagelstein says.

DiMatteo says he hopes eventually to commercialize Hagelstein’s new idea. In the meantime, he says the technology now being developed by his company, which he expects to have on the market next year, could produce a tenfold improvement in throughput power over existing photovoltaic devices, while the further advance described in this new paper could make an additional tenfold or greater improvement possible. The work described in this paper “is potentially a major finding,” he says.

DiMatteo says that worldwide, about 60 percent of all the energy produced by burning fuels or generated in powerplants is wasted, mostly as excess heat, and that this technology could “make it possible to reclaim a significant fraction of that wasted energy.”

When this work began around 2002, Hagelstein says, such devices “clearly could not be built. We started this as purely a theoretical exercise.” But developments since then have brought it much closer to reality.

While it may take a few years for the necessary technology for building affordable quantum-dot devices to reach commercialization, Hagelstein says, “there’s no reason, in principle, you couldn’t get another order of magnitude or more” improvement in throughput power, as well as an improvement in efficiency.

“There’s a gold mine in waste heat, if you could convert it,” he says. The first applications are likely to be in high-value systems such as computer chips, he says, but ultimately it could be useful in a wide variety of applications, including cars, planes and boats. “A lot of heat is generated to go places, and a lot is lost. If you could recover that, your transportation technology is going to work better.”


United States Patent7,390,962
Greiff , et al.June 24, 2008

Micron gap thermal photovoltaic device and method of making the same

Abstract

A method of making a micron gap thermal photovoltaic device wherein at least one standoff is formed on a photovoltaic substrate, a sacrificial layer is deposited on the photovoltaic substrate and about the standoff, an emitter is attached to the standoff and has a lower planar surface separated from the photovoltaic substrate by the sacrificial layer, and the sacrificial layer is removed to form a sub-micron gap between the photovoltaic substrate and the lower planar surface of the emitter.


Inventors:Greiff; Paul (Wayland, MA), DiMatteo; Robert Stephen (Belmont, MA)
Assignee:The Charles Stark Draper Laboratory, Inc. (Cambridge, MA)
Appl. No.:10/443,414
Filed:May 22, 2003

Source

Liquid battery big enough for the electric grid?

Professor Donald Sadoway’s research in energy storage could help speed the development of renewable energy.

There’s one major drawback to most proposed renewable-energy sources: their variability. The sun doesn’t shine at night, the wind doesn’t always blow, and tides, waves and currents fluctuate. That’s why many researchers have been pursuing ways of storing the power generated by these sources so that it can be used when it’s needed.

So far, those solutions have tended to be too expensive, limited to only certain areas, or difficult to scale up sufficiently to meet the demands. Many researchers are struggling to overcome these limitations, but MIT professor Donald Sadoway has come up with an innovative approach that has garnered significant interest — and some major funding.

The idea is to build an entirely new kind of battery, whose key components would be kept at high temperature so that they would stay entirely in liquid form. The experimental devices currently being tested in Sadoway’s lab work in a way that’s never been attempted in batteries before.

This month, the newly established federal agency ARPA-E (Advanced Research Projects Agency, Energy) announced its first 37 energy-research grants out of a pool of 3,600 applications, and Sadoway’s project to develop utility-scale batteries received one of the largest sums — almost $7 million over five years. And within a few days of the ARPA-E announcement, the French oil company Total — the world’s fifth-largest — announced a $4 million, five-year joint venture with MIT to develop a smaller-scale version of the same technology, suitable for use in individual homes or other buildings.

Because the technology is being patented and could lead to very large-scale commercialization, Sadoway will not discuss the details of the materials being used. But both Sadoway and ARPA-E say the battery is based on low-cost, domestically available liquid metals that have the potential to shatter the cost barrier to large-scale energy storage as part of the nation's energy grid. In announcing its funding of Sadoway’s work, ARPA-E said the battery technology “could revolutionize the way electricity is used and produced on the grid, enabling round-the-clock power from America's wind and solar power resources, increasing the stability of the grid, and making blackouts a thing of the past.”

Andrew Chung, a principal at Lightspeed Venture Partners in Menlo Park, Calif., which has no equity stake in Sadoway’s project at this point, says that “grid-scale storage is an area that’s set to explode in the next decade or so,” and is one that his company is following closely. The liquid battery concept Sadoway is developing “is an exciting approach to solving the problem,” he says.

Big is beautiful

Most battery research, Sadoway says, has been aimed at improving storage for portable or mobile systems such as cellphones, computers and cars. The requirements for such systems, including very low weight and high safety, are very different from the needs of a grid-scale, fixed-location battery system. “What I did was completely ignore the conventional technology used for portable power,” he says. The different set of requirements for stationary systems “opens up a whole new range of possibilities.”

A large, utility-owned system “doesn’t have to be crash-worthy; it doesn’t have to be ‘idiot-proof’ because it won’t be in the hands of the consumer.” And while consumers are willing to pay high prices, pound-for-pound, for the small batteries used in high-value portable devices, the biggest constraint on utility-sized systems is cost. In order to compete with present fossil-fuel power systems, he says, “it has got to be cheap to build, cheap to maintain, last a long time with minimal maintenance, and store enormous amounts of energy.”

And so the new liquid batteries that Sadoway and his team, including graduate student David Bradwell, are designing use low-cost, abundant materials. The basic principle is to place three layers of liquid inside a container: Two different metal alloys, and one layer of a salt. The three materials are chosen so that they have different densities that allow them to separate naturally into three distinct layers, with the salt in the middle separating the two metal layers —like novelty drinks with different layers.

The energy is stored in the liquid metals that want to react with one another but can do so only by transferring ions — electrically charged atoms of one of the metals — across the electrolyte, which results in the flow of electric current out of the battery. When the battery is being charged, some ions migrate through the insulating salt layer to collect at one of the terminals. Then, when the power is being drained from the battery, those ions migrate back through the salt and collect at the opposite terminal.

The whole device is kept at a high temperature, around 700 degrees Celsius, so that the layers remain molten. In the small devices being tested in the lab, maintaining this temperature requires an outside heater, but Sadoway says that in the full-scale version, the electrical current being pumped into, or out of, the battery will be sufficient to maintain that temperature without any outside heat source.

While some previous battery technologies have used one liquid-metal component, this is the first design for an all-liquid battery system, Sadoway says. “Solid components in batteries are speed bumps. When you want ultra-high current, you don’t want any solids.”

Inspiration from aluminum

The initial inspiration for the idea came from thinking about a very different technology, Sadoway says: one of the biggest users of electrical energy, aluminum smelting plants. Sadoway realized that this was one of the few existing examples of a system that could sustain extremely high levels of electrical current over a sustained period of years at a time. “It’s an electrochemical process that runs at high temperatures, and at a current of hundreds of thousands of amps,” he says. In a sense, the new concept is like an aluminum plant running in reverse, producing power instead of consuming it.

Chung says that from the point of view of a venture capitalist, the research is particularly intriguing for several reasons. Not only does it offer the potential to significantly lower the cost and increase cycle life [the number of times it can be charged and discharged] of large-scale electricity storage, but it also suggests that the risk typically associated with an early stage research project may be lower because the system draws on decades of experience in the design and operation of aluminum production facilities. “That gives us added confidence that some of the targets around cost, scalability and safety have merit,” he says.

The team is now testing a number of different variations of the exact composition of the materials in the three layers, and of the design of the overall device. Sadoway says that thanks to initial funding through the Deshpande Center and the Chesonis Family Foundation, he and his team were able to develop the concept to the point of demonstrating a proof-of-principle at the laboratory scale. That, in turn, made it possible to get the large grants to develop the technology further.

“It’s an example of work that sprang from basic science, was developed to a pilot scale, and now is being scaled up to have a real transformational impact in the world,” says Ernest Moniz, director of the MIT Energy Initiative.

The laboratory tests have provided “some measure of confidence,” Sadoway says. But many more tests will be needed to “demonstrate that the idea is scalable to industrial size, at competitive cost.” But while he is very confident that it will all work, there are a lot of unknowns, he says, including how to design and build the necessary containers, electrical control systems, and connections.

“We’re talking about batteries of a size never seen before,” he says. And the system they develop has to include everything, including control systems and charger electronics on an unprecedented scale.

For Sadoway, the project is worth pursuing despite its daunting challenges, because the potential impact is so great. “I’m not doing this because I want another journal publication,” Sadoway says. “It’s about making a difference … It’s an opportunity to invent our way out of the energy problem.”

Monday, September 21, 2009

Small springs could provide big power

Carol Livermore, associate professor of mechanical engineering, left, stands with graduate student Frances Hill in Livermore's lab.
Photo - Patrick Gillooly


Mechanical engineer Carol Livermore and colleagues find that carbon nanotubes, used as springs, have potential to compete with batteries for energy storage.
David L. Chandler, MIT News Office

New research by MIT scientists suggests that carbon nanotubes — tube-shaped molecules of pure carbon — could be formed into tiny springs capable of storing as much energy, pound for pound, as state-of-the-art lithium-ion batteries, and potentially more durably and reliably.

Imagine, for example, an emergency backup power supply or alarm system that can be left in place for many years without losing its "charge," portable mechanical tools like leaf blowers that work without the noise and fumes of small gasoline engines, or devices to be sent down oil wells or into other harsh environments where the performance of ordinary batteries would be degraded by temperature extremes. That's the kind of potential that carbon nanotube springs could hold, according to Carol Livermore, associate professor of mechanical engineering. Carbon nanotube springs, she found, can potentially store more than a thousand times more energy for their weight than steel springs.

Two papers describing Livermore and her team's findings on energy storage in carbon nanotube springs have just been published. A paper describing a theoretical analysis of the springs' potential, co-authored by Livermore, graduate student Frances Hill and Timothy Havel SM ’07, appeared in June in the journal Nanotechnology. Another paper, by Livermore, Hill, Havel and A. John Hart SM ’02, PhD ’06, now a professor at the University of Michigan, describing laboratory tests that demonstrate that nanotubes really can exceed the energy storage potential of steel, appears in the September issue of the Journal of Micromechanics and Microengineering.

Theoretical analysis shows the carbon nanotube springs could ultimately have an energy density — a measure of the amount of energy that can be stored in a given weight of material — more than 1,000 times that of steel springs, and comparable to that of the best lithium-ion batteries.

With a snap or a tick-tock

For some applications, springs can have advantages over other ways of storing energy, Livermore explains. Unlike batteries, for example, springs can deliver the stored energy effectively either in a rapid, intense burst, or slowly and steadily over a long period — as exemplified by the difference between the spring in a mousetrap or in a windup clock. Also, unlike batteries, stored energy in springs normally doesn't slowly leak away over time; a mousetrap can remain poised to snap for years without dissipating any of its energy.

For that reason, such systems might lend themselves to applications for emergency backup systems. With batteries, such devices need to be tested frequently to make sure they still have full power, and replace or recharge the batteries when they run down, but with a spring-based system, in principle "you could stick it on the wall and forget it," Livermore says.

Livermore says that the springs made from these minuscule tubes might find their first uses in large devices rather than in micro-electromechanical devices. For one thing, the best uses of such springs may be in cases where the energy is stored mechanically and then used to drive a mechanical load, rather than converting it to electricity first.

Any system that requires conversion from mechanical energy to electrical and back again, using a generator and then a motor, will lose some of its energy in the process through friction and other processes that produce waste heat. For example, a regenerative braking system that stores energy as a bicycle coasts downhill and then releases that energy to boost power while going uphill might be more efficient if it stores and releases its energy from a spring instead of an electrical system, she says. In addition to the direct energy losses, about half the weight of such electromechanical systems currently is in the motor-generator used for the conversion — something that wouldn't be needed in a purely mechanical system.

One reason the microscopic tubes lend themselves to being made into longer fibers that can make effective springs is that the nanotube molecules themselves have a strong tendency to stick to each other. That makes it relatively easy to spin them into long fibers — much as strands of wool can be spun into yarn — and this is something many researchers around the world are working on. "In fact," Livermore says, the fibers are so sticky that "we had some comical moments when you're trying to get them off your tweezers." But that quality means that ultimately it may be possible to "make something that looks like a carbon nanotube and is as long as you want it to be."

Tough and long-lasting

Carbon nanotube springs also have the advantage that they are relatively unaffected by differences in temperature and other environmental factors, whereas batteries need to be optimized for a particular set of conditions, usually to operate at normal room temperature. Nanotube springs might thus find applications in extreme conditions, such as for devices to be used in an oil borehole subjected to high temperature and pressure, or on space vehicles where temperature can fluctuate between extreme heat and extreme cold.

"They should also be able to charge and recharge many times without a loss of performance," Livermore says, although the actual performance over time still needs to be tested.

Livermore says that to create devices that come close to achieving the theoretically possible high energy density of the material will require plenty of additional basic research, followed by engineering work. Among other things, the initial lab tests used fibers of carbon nanotubes joined in parallel, but creating a practical energy storage device will require assembling nanotubes into longer and likely thicker fibers without losing their key advantages.

"These scaled-up springs need to be large (i.e., incorporating many carbon nanotubes), but those individual carbon nanotubes need to work well enough together in the overall assembly of tubes for it to have comparable properties to the individual tubes," Livermore says. "This is not easy to do."

Rod Ruoff, professor of mechanical engineering at the University of Texas, adds that while the theoretical energy density of such systems is high, present ways of making carbon nanotubes are limited in their ability to produce highly concentrated bundles, and so "It appears to me that the 'low hanging fruit' here is to find important applications where the energy density on per weight basis outweighs the energy density on a per volume basis." But, he adds, if Livermore and her team are able to produce denser bundles of carbon nanotubes, "then there are exciting possibilities for mechanical energy storage" with such systems.

The group has already filed for a patent on the technology. Their work has been funded by the Deshpande Center for Technological Innovation Ignition grant and by an MIT Energy Initiative seed grant.

Source

Thursday, May 7, 2009

MIT: Nanotech targets and kills cancerous tumors

Sharon Gaudin
07.05.2009 kl 18:45 | IDG News Service

Scientists have long known that heat is an effective weapon against cancerous tumors. The problem, though, has been how to heat the tumors to the point that it kills them without damaging surrounding tissue.

Scientists have long known that heat is an effective weapon against cancerous tumors. The problem, though, has been how to heat the tumors to the point that it kills them without damaging surrounding tissue.

Now researchers MIT think they have the answer: nanotechnology.

The school announced this week that the researchers have developed gold nanoparticles that can target tumors and heat them with minimal side effects to nearby healthy cells. While the gold nanorods were used in the study to find and hone in on tumors, they also might be able to diagnose cancer, according to MIT graduate student Geoffrey von Maltzahn, who worked with Sangeeta Bhatia, a professor in the Harvard-MIT Division of Health Sciences and Technology, to develop the nanoparticles.

The researchers said that tumors in mice that received the nanorod treatment disappeared within 15 days. The cancer did not reoccur for the duration of the three-month study.

This news comes just months after MIT announced that a group of scientists there had developed nanotechnology that can be placed inside living cells to determine whether chemotherapy drugs used to treat cancer are reaching their targets or attacking healthy cells. Researchers use carbon nanotubes wrapped in DNA so they can be safely injected into living tissue.

And last August, scientists at Stanford University reported that they had found a way to use nanotechnology to have chemotherapy drugs target only cancer cells, keeping healthy tissue safe from the treatment's toxic effects.

And that news came on the heels of a report out last July noting that researchers at the University of California, San Diego, had discovered a way to use nanotechnology-based "smart bombs" to send lower doses of chemotherapy to cancerous tumors, thus cutting down the cancer's ability to spread throughout the body.

Cancer researchers have long been trying to figure out a way to better attack cancer cells without harming surrounding cells as well. That has been one of the major drawbacks of chemotheraphy and radiation therapy, which often have debilitating side effects because of the difficulty in targeting just the cancerous tissue.

According to MIT, cancer affects about 7 million people a year worldwide, and that number is projected to jump to 15 million by 2020. Most of those patients are treated with chemotherapy and/or radiation and 99% of those drugs typically don't reach the tumor, said von Maltzahn.

He added that their work with the gold nanorods is the "most efficient method" in targeting tumors yet developed.

The nanoparticles work in this cancer treatment by absorbing light at near-infrared frequency. The light heats the rods but passes harmlessly through human tissue, said von Maltzahn. The nanoparticles accumulate in the tumors, and within three days, the liver and spleen clear any that don't reach the tumor.

The mice that were treated in the MIT study received an injection of the gold nanorods along with near-infrared laser treatment. With this combination therapy, the tumors disappeared and did not return in the duration of the scientists' research.

Source

Saturday, March 14, 2009

Re-engineered battery material could lead to rapid recharging of many devices/MIT/Ceder, Kang

3/13/2009 6:17:53 PM
Re-engineered battery material could lead to rapid recharging of many devices

MIT engineers have created a kind of beltway that allows for the rapid transit of electrical energy through a well-known battery material, an advance that could usher in smaller, lighter batteries -- for cell phones and other devices -- that could recharge in seconds rather than hours.

The work could also allow for the quick recharging of batteries in electric cars, although that particular application would be limited by the amount of power available to a homeowner through the electric grid.

The work, led by Gerbrand Ceder, the Richard P. Simmons Professor of Materials Science and Engineering, is reported in the March 12 issue of Nature. Because the material involved is not new -- the researchers have simply changed the way they make it -- Ceder believes the work could make it into the marketplace within two to three years.

State-of-the-art lithium rechargeable batteries have very high energy densities -- they are good at storing large amounts of charge. The tradeoff is that they have relatively slow power rates -- they are sluggish at gaining and discharging that energy. Consider current batteries for electric cars. "They have a lot of energy, so you can drive at 55 mph for a long time, but the power is low. You can't accelerate quickly," Ceder said.

Why the slow power rates? Traditionally, scientists have thought that the lithium ions responsible, along with electrons, for carrying charge across the battery simply move too slowly through the material.

About five years ago, however, Ceder and colleagues made a surprising discovery. Computer calculations of a well-known battery material, lithium iron phosphate, predicted that the material's lithium ions should actually be moving extremely quickly.

"If transport of the lithium ions was so fast, something else had to be the problem," Ceder said.

Further calculations showed that lithium ions can indeed move very quickly into the material but only through tunnels accessed from the surface. If a lithium ion at the surface is directly in front of a tunnel entrance, there's no problem: it proceeds efficiently into the tunnel. But if the ion isn't directly in front, it is prevented from reaching the tunnel entrance because it cannot move to access that entrance.

Ceder and Byoungwoo Kang, a graduate student in materials science and engineering, devised a way around the problem by creating a new surface structure that does allow the lithium ions to move quickly around the outside of the material, much like a beltway around a city. When an ion traveling along this beltway reaches a tunnel, it is instantly diverted into it. Kang is a coauthor of the Nature paper.

Using their new processing technique, the two went on to make a small battery that could be fully charged or discharged in 10 to 20 seconds (it takes six minutes to fully charge or discharge a cell made from the unprocessed material).

Ceder notes that further tests showed that unlike other battery materials, the new material does not degrade as much when repeatedly charged and recharged. This could lead to smaller, lighter batteries, because less material is needed for the same result.

"The ability to charge and discharge batteries in a matter of seconds rather than hours may open up new technological applications and induce lifestyle changes," Ceder and Kang conclude in their Nature paper.

This work was supported by the National Science Foundation through the Materials Research Science and Engineering Centers program and the Batteries for Advanced Transportation Program of the U.S. Department of Energy. It has been licensed by two companies. [The technology has already been licensed to two companies: the Belgian materials company Umicore, which makes the lithium particles, and a battery manufacturer.] [Ric Fulop, cofounder of Watertown battery company A123Systems, said his company had an option to license the technology. "From here to product takes a couple years, but it's very promising," Fulop said ].


Source


NPR INTERVIEW WITH Gerbrand Ceder


A123Systems Announces Plan to Build U.S.-based Lithium Ion Battery Mass Production Facilities

Planned $2.3 Billion facilities will support aggressive expansion plan to deliver energy storage systems to A123’s multiple OEM customers in the Electric and Hybrid Electric Vehicle market
Link

Saturday, February 21, 2009

Thomas J. Lewis, PhD

Photo of speaker

flagThomas J. Lewis, PhD

Dr. Thomas J. Lewis holds a Ph.D. in Inorganic and Physical Chemistry from MIT (1984). His research career focused mainly on kinetics and electron transfer properties of metal centered macrocycles. He has consulted in toxicology to much of big Pharma. Recently he developed several new sonodynamic therapeutic agents for cancer treatment.

Source 1

Source 2

Friday, January 9, 2009

Nanotube Superbatteries

Friday, January 09, 2009

Dense films of carbon nanotubes store large amounts of energy.

By Katherine Bourzac

Pure power: Pure thin films of carbon nanotubes can store and carry large amounts of electrical charge, making them promising electrode materials. This scanning-electron-microscope image shows a film made up of 30 layers of the nanotubes on a silicone substrate.
Credit: Journal of the American Chemical Society

Researchers at MIT have made pure, dense, thin films of carbon nanotubes that show promise as electrodes for higher-capacity batteries and supercapacitors. Dispensing with the additives previously used to hold such films together improved their electrical properties, including the ability to carry and store a large amount of charge.

Carbon nanotubes can carry and store more charge than other forms of carbon, in part because their nanoscale structure gives them a very large surface area. But conventional methods for making them into films leave significant gaps between individual nanotubes or require binding materials to hold them together. Both approaches reduce the films' conductivity--the ability to convey charge--and capacitance--the ability to store it.

The MIT group, led by chemical-engineering professor Paula Hammond and mechanical-engineering professor Yang Shao-Horn, made the new nanotube films using a technique called layer-by-layer assembly. First, the group creates water solutions of two kinds of nanotubes: one type has positively charged molecules bound to them, and the other has negatively charged molecules. The researchers then alternately dip a very thin substrate, such as a silicon wafer, into the two solutions. Because of the differences in their charge, the nanotubes are attracted to each other and hold together without the help of any glues. And nanotubes of similar charge repel each other while in solution, so they form thin, uniform layers with no clumping.

The resulting films can then be detached from the substrate and baked in a cloud of hydrogen to burn off the charged molecules, leaving behind a pure mat of carbon nanotubes. The films are about 70 percent nanotubes; the rest is empty space, pores that could be used to store lithium or liquid electrolytes in future battery electrodes. The films "can store a lot of energy and discharge it rapidly," says Hammond. The capacitance of the MIT films--that is, their ability to store electrical charge--is one of the highest ever measured for carbon-nanotube films, says Shao-Horn. This means that they could serve as electrodes for batteries and supercapacitors that charge quickly, have a high power output, and have a long life.

The MIT group is not the first to use the layering technique to create nanotube films. But previously, researchers using the method layered a positively charged polymer with negatively charged nanotubes, resulting in films that were only half nanotubes. No polymer can equal the electrical conductivity of carbon nanotubes, so these films' electrical properties weren't as impressive as those of Hammond and Shao-Horn. Others have made films by growing the nanotubes from the substrate up, but the resulting forest of vertically aligned nanotubes is insufficiently dense.

"I see particular importance of these findings for supercapacitors, because all-nanotube materials can potentially store a greater amount of charge," says Nicholas Kotov, a professor of chemical engineering and materials science at the University of Michigan.

In addition to their high capacitance, the nanotube films have other advantages as electrode materials, says Shao-Horn. Conventional high-energy-density electrodes are made of carbon powder held together with a binder. But particles of the binder in the surface of the electrode reduce its active area and make it difficult to modify. With carbon nanotubes, says Shao-Horn, "you have systematic control of surface chemistry." Adding charged molecules to the electrodes' surface, for example, could increase their capacitance and energy density.

"Many researchers are pursuing thin films of carbon nanotubes for diverse applications in electronics, energy storage, and other areas," says John Rogers, a professor of materials science and engineering at the University of Illinois at Champaign-Urbana. The MIT group is primarily focused on developing the films for electrochemical applications like batteries, but the layering technique is versatile. By varying the pH of the nanotube solutions and the number of layers in the films, it's possible to tailor the films' electrical properties. This is "an attractive feature of this approach," says Rogers. The technique could be used to make nanotube films for flexible electronics, for example. Kotov also sees other potential uses of the nanotube films. When immersed in liquid, the films swell. "This will be useful, because it changes both the conductivity and capacity of the material, which opens up a lot of prospects for sensing applications and smart coatings," says Kotov.

The layer-by-layer method is time consuming, however. Typical electrodes are 10 to 100 micrometers thick; those that the MIT group has made so far are only about 1 micrometer thick. But Hammond, a pioneer in layer-by-layer assembly of polymers, has developed a layer-by-layer spraying technique that should be adaptable to nanotubes. "This reduces the time it takes by an order of magnitude, which will be necessary for commercial development," says Shao-Horn.

Source

Sunday, December 14, 2008

Cells used as vectors to carry materials to tumors, infection sites or other tissue sites

Cells used as vectors to carry materials to tumors, infection sites or other tissue sites by Monica Tele

Published 11/25/2008

 Cells  vectors tumors infection sites


MIT engineers have outfitted cells with tiny "backpacks" that could allow them to deliver chemotherapy agents, diagnose tumors or become building blocks for tissue engineering.

Michael Rubner, director of MIT's Center for Materials Science and Engineering and senior author of a paper on the work that appeared online in Nano Letters on Nov. 5, said he believes this is the first time anyone has attached such a synthetic patch to a cell.

The polymer backpacks allow researchers to use cells to ferry tiny cargoes and manipulate their movements using magnetic fields. Since each patch covers only a small portion of the cell surface, it does not interfere with the cell's normal functions or prevent it from interacting with the external environment.

"The goal is to perturb the cell as little as possible," said Robert Cohen, the St. Laurent Professor of Chemical Engineering at MIT and an author of the paper.

The researchers worked with B and T cells, two types of immune cells that can home to various tissues in the body, including tumors, infection sites, and lymphoid tissues � a trait that could be exploited to achieve targeted drug or vaccine delivery.

"The idea is that we use cells as vectors to carry materials to tumors, infection sites or other tissue sites," said Darrell Irvine, an author of the paper and associate professor of materials science and engineering and biological engineering.

Cellular backpacks carrying chemotherapy agents could target tumor cells, while cells equipped with patches carrying imaging agents could help identify tumors by binding to protein markers expressed by cancer cells.

Supporting Information for Synthetically Functionalized Living Cells

Thursday, October 16, 2008

The Materialist

He designs nanomaterials with outrageous abilities

By Gregory Mone Posted 10.16.2008 at 1:45 pm

Earlier this year, Francesco Stellacci announced that his group had developed a material that can suck 20 times its weight in oil out of a sample of water. The material could be used to clean up massive crude spills, and chemist Joerg Lahann of the University of Michigan called the work a blueprint for scientists who hope to design nanomaterials that protect the environment. Yet Stellacci doesn’t consider this his best work. He’s excited about tricking cells.

Stellacci’s first major step came in 2003, when he created a peculiar coating for metallic nanoparticles. He had been wondering what would happen if hydrophilic, or water-loving, molecules, and their opposites, hydrophobes, were stuck together on the surface of a nanosize sphere. So he ran an experiment and found that the molecules self-organized into alternating stripes, like lines of latitude on a globe. A belt of tiny, spherical hydrophilic molecules sat atop a band of hydrophobes, and so on from top to bottom.

These stripes are not only aesthetically attractive, they gave his particles new properties. Typically, when materials try to enter a cell, they either get swallowed up and spat out, or they damage it by poking a hole in its membrane. But Stellacci’s striped nanoparticles slipped right in. “The cell has a security system,” he says, “and somehow my particles trick it.”

He hasn’t figured out how this works, but he has shown that the particles could improve drug delivery by giving molecules safe passage into cells. This finding, along with the oil-absorbing material and a new genetic testing technique he developed, has his contemporaries buzzing. “From time to time you see those big leaps in science,” Lahann says. “Francesco is one of those people who has taken several big leaps.”

Source

CANCER CELL TARGETING USING NANOPARTICLES

(WO/2008/121949)

Pub. No.:
WO/2008/121949
International Application No.:
PCT/US2008/058873
Publication Date:09.10.2008 International Filing Date:31.03.2008
IPC: A61K 9/14 (2006.01), B82B 1/00 (2006.01)
Applicants:MASSACHUSETTS INSTITUTE OF TECHNOLOGY [US/US]; Room NE25-230, 5 Cambridge Center, Kendall Square, Cambridge, MA 02142 (US) (All Except US).
ZALE, Stephen, E. [US/US]; 101 Binney Street, Cambridge, MA 02142 (US) (US Only).
Inventor:ZALE, Stephen, E.; 101 Binney Street, Cambridge, MA 02142 (US).
Agent:HANLEY, Elizabeth, A.; Lahive & Cockfield, LLP, One Post Office Square, Boston, MA 02109-2127 (US).
Priority Data:
PCT/US2007/007927
30.03.2007
US
60/976,197
28.09.2007
US
Title: CANCER CELL TARGETING USING NANOPARTICLES
Abstract:
The present invention generally relates to polymers and macromolecules, in particular, to polymers useful in particles such as nanoparticles. One aspect of the invention is directed to a method of developing nanoparticles with desired properties. In one set of embodiments, the method includes producing libraries of nanoparticles having highly controlled properties, which can be formed by mixing together two or more macromolecules in different ratios. One or more of the macromolecules may be a polymeric conjugate of a moiety to a biocompatible polymer. In some cases, the nanoparticle may contain a drug. Other aspects of the invention are directed to methods using nanoparticle libraries.

Source

Thursday, August 28, 2008

Beyond Nano Breakthrough, MIT Team Quietly Builds Virus-Based Batteries

August 28, 2008

(Photo Courtesy of Belcher Laboratory/MIT)

CAMBRIDGE, Mass. — In a surprise power development that could have implications for electronics, cars and even the military, researchers at MIT have created the world's first batteries constructed at the nano-scale by microscopic viruses.

A much buzzed-about paper published in the Proceedings of the National Academy of Sciences earlier this month details the team's success in creating two of the three parts of a working battery—the positively charged anode and the electrolyte. But team leader Angela Belcher told PM yesterday that the team has been working seriously on cathode technology for the past year, creating several complete prototypes.

"We haven't published those yet, actually. We're just getting ready to write them up and send them off," says Belcher, who won a MacArthur "genius" grant from the for her work in 2004, and a Breakthrough Award from PM in 2006. "The cathode material has been a little more difficult, but we have several different candidates, and we have made full, working batteries."

Instead of physically arranging the component parts, researchers genetically engineer viruses to attract individual molecules of materials they're interested in, like cobalt oxide, from a solution, autonomously forming wires 17,000 times thinner than a sheet of paper that pack themselves together to form electrodes smaller than a human cell.

"Once you do the genetic engineering with the viruses themselves, you pour in the solution and they grow the right combination of these materials on them," Belcher says.

The team is working on three main architectures: Film-like structures—as small as a human cell—could form a clear film to power lab-on-a-chip applications, laminate into smart-cards, or even interface with implanted medical devices. Mesh-like architectures—billions of tiny nano-components all interfaced together—might one day replace conventional batteries in larger applications like laptops and cars. And fiber-like configurations—spun from liquid crystal like a spider's silk—might one day be woven into textiles, providing a wearable power-source for the military. "We definitely don't have full batteries on those [fiber architectures]. We've only worked on single electrodes so far, but the idea is to try to make these fiber batteries that could be integrated into textiles and woven into lots of different shapes," Belcher says.

The M13 viruses used by the team can't reproduce by themselves, and are only capable of infecting bacteria. At just 880 nanometers long—500 times smaller than a grain of salt—the bugs allow researchers to work at room temperatures and pressures with molecular precision, using and wasting fewer hazardous materials. Now that they've demonstrated that the construction of such tiny electronic components is possible, the challenge facing researchers is how to make them practical.

"What we're working on is not thinking about a particular device application, but trying to improve the quality of the anode and cathode materials—using biology just to make a higher quality material for energy density," Belcher says. "We haven't ruled out cars. That's a lot of amplification. But right now the thing is trying to make the best material possible, and if we get a really great material, then we have to think about how do you scale it." — Chris Ladd

Source

Wednesday, May 14, 2008

Super Battery

play video Video
Man Using PDA
image: The NewsMarket
(movie will open in a separate window)
Choose your format:
Quicktime
Realmedia

Ever wish you could charge your cellphone or laptop in a few seconds rather than hours? As this ScienCentral News video explains, researchers at the Massachusetts Institute of Technology are developing a battery that could do just that, and also might never need to be replaced.

The Past is Future

As our portable devices get more high-tech, the batteries that power them can seem to lag behind. But Joel Schindall and his team at M.I.T. plan to make long charge times and expensive replacements a thing of the past--by improving on technology from the past.

They turned to the capacitor, which was invented nearly 300 years ago. Schindall explains, "We made the connection that perhaps we could take an old product, a capacitor, and use a new technology, nanotechnology, to make that old product in a new way."

Rechargable and disposable batteries use a chemical reaction to produce energy. "That's an effective way to store a large amount of energy," he says, "but the problem is that after many charges and discharges ... the battery loses capacity to the point where the user has to discard it."




"It could be recharged many, many times perhaps hundreds of thousands of times, and ... it could be recharged very quickly, just in a matter of seconds rather than a matter of hours," he says.


This technology has broad practical possibilities, affecting any device that requires a battery. Schindall says, "Small devices such as hearing aids that could be more quickly recharged where the batteries wouldn't wear out; up to larger devices such as automobiles where you could regeneratively re-use the energy of motion and therefore improve the energy efficiency and fuel economy."

Schindall thinks hybrid cars would be a particularly popular application for these batteries, especially because current hybrid batteries are expensive to replace.

Battery Nanotubes
Nanotube filaments on the battery's electrodes
image: MIT/Riccardo Signorelli
Schindall also sees the ecological benefit to these reinvented capacitors. According to the Environmental Protection Agency, more than 3 billion industrial and household batteries were sold in the United States in 1998. When these batteries are disposed, toxic chemicals like cadmium can seep into the ground.

"It's better for the environment, because it allows the user to not worry about replacing his battery," he says. "It can be discharged and charged hundreds of thousands of times, essentially lasting longer than the life of the equipment with which it is associated."

Schindall and his team aren't the only ones looking back to capacitors as the future of batteries; a research group in England recently announced advances of their own. But Schindall's groups expects their prototype to be finished in the next few months, and they hope to see them on the market in less than five years.

Schindall's research was featured in the May 2006 edition of Discover Magazine and presented at the 15th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices in Deerfield Beach, Florida on December 2005. His research is funded by the Ford-MIT Consortium.

Source